Mining Data Streams

The Stream Model
Sliding Windows
Counting 1's

Cloud and Big Data Summer School, Stockholm, Aug. 2015 Jeffrey D. Ullman

Data Management Vs. Stream Management

- In a DBMS, input is under the control of the programming staff.
- SQL INSERT commands or bulk loaders.
- Stream management is important when the input rate is controlled externally.
- Example: Google search queries.

The Stream Model

- Input tuples enter at a rapid rate, at one or more input ports.
- The system cannot store the entire stream accessibly.
- How do you make critical calculations about the stream using a limited amount of (primary or secondary) memory?

Two Forms of Query

1. Ad-hoc queries: Normal queries asked one time about streams.

- Example: What is the maximum value seen so far in stream S ?

2. Standing queries: Queries that are, in principle, asked about the stream at all times.

- Example: Report each new maximum value ever seen in stream S.

Applications

- Mining query streams.
- Google wants to know what queries are more frequent today than yesterday.
- Mining click streams.
- Yahoo! wants to know which of its pages are getting an unusual number of hits in the past hour.
- Often caused by annoyed users clicking on a broken page.
- IP packets can be monitored at a switch.
- Gather information for optimal routing.
- Detect denial-of-service attacks.

Sliding Windows

- A useful model of stream processing is that queries are about a window of length N - the N most recent elements received.
- Alternative: elements received within a time interval T.
- Interesting case: N is so large it cannot be stored in main memory.
- Or, there are so many streams that windows for all do not fit in main memory.

qwertyuiopasdfghjklzxcvbnm

qwertyuiopasdfghjkIzxcvbnm
qwertyuiopasdfghjklzxcvbnm
qwertyuiopasdfghjkIzxcvbnm

Future

Example: Averages

- Stream of integers, window of size N.
- Standing query: what is the average of the integers in the window?
- For the first N inputs, sum and count to get the average.
- Afterward, when a new input i arrives, change the average by adding $(i-j) / N$, where j is the oldest integer in the window.
- Good: O(1) time per input.
- Bad: Requires the entire window in memory.

Counting 1's

Approximating Counts
Exponentially Growing Blocks
DGIM Algorithm

Counting Bits

- Problem: given a stream of 0's and 1's, be prepared to answer queries of the form "how many 1 's in the last k bits?" where $k \leq N$.
- Obvious solution: store the most recent N bits.
- But answering the query will take $O(k)$ time.
- Very possibly too much time.
- And the space requirements can be too great.
- Especially if there are many streams to be managed in main memory at once, or N is huge.

Example: Bit Counting

- Count recent hits on URL's belonging to a site.
- Stream is a sequence of URL’s.
- Window size $N=1$ billion.
- Think of the data as many streams - one for each URL.
- Bit on the stream for URL x is 0 unless the actual stream has x .

DGIM Method

- Name refers to the inventors:
- Datar, Gionis, Indyk, and Motwani.
- Store only $\mathrm{O}\left(\log ^{2} N\right.$) bits per stream ($\mathrm{N}=$ window size).
- Gives approximate answer, never off by more than 50\%.
- Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits.

Timestamps

- Each bit in the stream has a timestamp, starting $0,1, \ldots$
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $\mathrm{O}\left(\log _{2} N\right)$ bits.

Buckets

- A bucket is a segment of the window; it is represented by a record consisting of:

1. The timestamp of its end $[O(\log N)$ bits].
2. The number of 1's between its beginning and end.

- Number of 1's = size of the bucket.

Constraint on bucket sizes: number of 1's must be a power of 2 .

- Thus, only $\mathrm{O}(\log \log N)$ bits are required for this count.

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1's.
- Buckets do not overlap.
- Buckets are sorted by size.
- Older buckets are not smaller than newer buckets.
- Buckets disappear when their end-time is $>N$ time units in the past.

Example: Bucketized Stream

Updating Buckets

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time.
- If the current bit is 0 , no other changes are needed.

Updating Buckets: Input = 1

If the current bit is 1 :

1. Create a new bucket of size 1 , for just this bit.

- End timestamp = current time.

2. If there are now three buckets of size 1, combine the oldest two into a bucket of size 2 .
3. If there are now three buckets of size 2 , combine the oldest two into a bucket of size 4.
4. And so on ...

Example: Managing Buckets

$1001010110001011610101010101011010101010101110101010111010100610110{ }^{2} 10$

00101011000101101010101010101101010101010111010101011010100010100101

00101011000101101010101010101101010101010111010101011010100010100101

01011000101061010101010101101010101010111010101011101010001010010 且
$01011000101010101010101011010101010101110101010110101000101001011 \phi_{1}$

01011000101101010101010101101010101010111010101011101010001011001011

Querying

- To estimate the number of 1's in the most recent $k \leq N$ bits:

1. Restrict your attention to only those buckets whose end time stamp is at most k bits in the past.
2. Sum the sizes of all these buckets but the oldest.
3. Add half the size of the oldest bucket.

- Remember: we don't know how many 1's of the last bucket are still within the window.

Error Bound

- Suppose the oldest bucket within range has size 2^{i}.
- Then by assuming 2^{i-1} of its 1 's are still within the window, we make an error of at most 2^{i-1}.
- Since there is at least one bucket of each of the sizes less than 2^{i}, and at least 1 from the oldest bucket, the true sum is no less than 2^{i}.
- Thus, error at most 50\%.

