
Cloud and Big Data Summer
School, Stockholm, Aug. 2015
Jeffrey D. Ullman

2

 In a DBMS, input is under the control of the
programming staff.

 SQL INSERT commands or bulk loaders.

 Stream management is important when the
input rate is controlled externally.

 Example: Google search queries.

3

 Input tuples enter at a rapid rate, at one or
more input ports.

 The system cannot store the entire stream
accessibly.

 How do you make critical calculations about the
stream using a limited amount of (primary or
secondary) memory?

4

1. Ad-hoc queries: Normal queries asked one
time about streams.

 Example: What is the maximum value seen so
far in stream S?

2. Standing queries: Queries that are, in
principle, asked about the stream at all
times.

 Example: Report each new maximum value ever
seen in stream S.

5

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
 time

Streams Entering

Output

Archival
Storage

Processor

Ad-Hoc
Queries

Standing
Queries

6

 Mining query streams.

 Google wants to know what queries are more
frequent today than yesterday.

 Mining click streams.

 Yahoo! wants to know which of its pages are getting
an unusual number of hits in the past hour.

 Often caused by annoyed users clicking on a broken page.

 IP packets can be monitored at a switch.

 Gather information for optimal routing.

 Detect denial-of-service attacks.

7

 A useful model of stream processing is that
queries are about a window of length N – the
N most recent elements received.
 Alternative: elements received within a time

interval T.
 Interesting case: N is so large it cannot be

stored in main memory.
 Or, there are so many streams that windows for

all do not fit in main memory.

8

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

 Stream of integers, window of size N.
 Standing query: what is the average of the

integers in the window?
 For the first N inputs, sum and count to get the

average.
 Afterward, when a new input i arrives, change

the average by adding (i - j)/N, where j is the
oldest integer in the window.

 Good: O(1) time per input.
 Bad: Requires the entire window in memory.

9

11

 Problem: given a stream of 0’s and 1’s, be
prepared to answer queries of the form “how
many 1’s in the last k bits?” where k ≤ N.

 Obvious solution: store the most recent N bits.
 But answering the query will take O(k) time.

 Very possibly too much time.

 And the space requirements can be too great.

 Especially if there are many streams to be managed
in main memory at once, or N is huge.

 Count recent hits on URL’s belonging to a site.
 Stream is a sequence of URL’s.
 Window size N = 1 billion.
 Think of the data as many streams – one for

each URL.
 Bit on the stream for URL x is 0 unless the

actual stream has x.

12

13

 Name refers to the inventors:

 Datar, Gionis, Indyk, and Motwani.

 Store only O(log2N) bits per stream (N = window
size).

 Gives approximate answer, never off by more
than 50%.

 Error factor can be reduced to any fraction > 0, with
more complicated algorithm and proportionally
more stored bits.

14

 Each bit in the stream has a timestamp, starting
0, 1, …

 Record timestamps modulo N (the window
size), so we can represent any relevant
timestamp in O(log2N) bits.

15

 A bucket is a segment of the window; it is
represented by a record consisting of:

1. The timestamp of its end [O(log N) bits].

2. The number of 1’s between its beginning and end.

 Number of 1’s = size of the bucket.

 Constraint on bucket sizes: number of 1’s must
be a power of 2.

 Thus, only O(log log N) bits are required for this
count.

16

 Either one or two buckets with the same
power-of-2 number of 1’s.

 Buckets do not overlap.
 Buckets are sorted by size.

 Older buckets are not smaller than newer buckets.

 Buckets disappear when their end-time is > N
time units in the past.

17

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

18

 When a new bit comes in, drop the last (oldest)
bucket if its end-time is prior to N time units
before the current time.

 If the current bit is 0, no other changes are
needed.

19

 If the current bit is 1:

1. Create a new bucket of size 1, for just this bit.

 End timestamp = current time.

2. If there are now three buckets of size 1, combine
the oldest two into a bucket of size 2.

3. If there are now three buckets of size 2, combine
the oldest two into a bucket of size 4.

4. And so on …

20

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

21

 To estimate the number of 1’s in the most
recent k < N bits:

1. Restrict your attention to only those buckets
whose end time stamp is at most k bits in the past.

2. Sum the sizes of all these buckets but the oldest.

3. Add half the size of the oldest bucket.

 Remember: we don’t know how many 1’s of
the last bucket are still within the window.

22

 Suppose the oldest bucket within range has
size 2i.

 Then by assuming 2i -1 of its 1’s are still within
the window, we make an error of at most 2i -1.

 Since there is at least one bucket of each of
the sizes less than 2i, and at least 1 from the
oldest bucket, the true sum is no less than 2i.

 Thus, error at most 50%.

