
Cloud and Big Data Summer
School, Stockholm, Aug. 2015
Jeffrey D. Ullman

2

 In a DBMS, input is under the control of the
programming staff.

 SQL INSERT commands or bulk loaders.

 Stream management is important when the
input rate is controlled externally.

 Example: Google search queries.

3

 Input tuples enter at a rapid rate, at one or
more input ports.

 The system cannot store the entire stream
accessibly.

 How do you make critical calculations about the
stream using a limited amount of (primary or
secondary) memory?

4

1. Ad-hoc queries: Normal queries asked one
time about streams.

 Example: What is the maximum value seen so
far in stream S?

2. Standing queries: Queries that are, in
principle, asked about the stream at all
times.

 Example: Report each new maximum value ever
seen in stream S.

5

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
 time

Streams Entering

Output

Archival
Storage

Processor

Ad-Hoc
Queries

Standing
Queries

6

 Mining query streams.

 Google wants to know what queries are more
frequent today than yesterday.

 Mining click streams.

 Yahoo! wants to know which of its pages are getting
an unusual number of hits in the past hour.

 Often caused by annoyed users clicking on a broken page.

 IP packets can be monitored at a switch.

 Gather information for optimal routing.

 Detect denial-of-service attacks.

7

 A useful model of stream processing is that
queries are about a window of length N – the
N most recent elements received.
 Alternative: elements received within a time

interval T.
 Interesting case: N is so large it cannot be

stored in main memory.
 Or, there are so many streams that windows for

all do not fit in main memory.

8

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

 Stream of integers, window of size N.
 Standing query: what is the average of the

integers in the window?
 For the first N inputs, sum and count to get the

average.
 Afterward, when a new input i arrives, change

the average by adding (i - j)/N, where j is the
oldest integer in the window.

 Good: O(1) time per input.
 Bad: Requires the entire window in memory.

9

11

 Problem: given a stream of 0’s and 1’s, be
prepared to answer queries of the form “how
many 1’s in the last k bits?” where k ≤ N.

 Obvious solution: store the most recent N bits.
 But answering the query will take O(k) time.

 Very possibly too much time.

 And the space requirements can be too great.

 Especially if there are many streams to be managed
in main memory at once, or N is huge.

 Count recent hits on URL’s belonging to a site.
 Stream is a sequence of URL’s.
 Window size N = 1 billion.
 Think of the data as many streams – one for

each URL.
 Bit on the stream for URL x is 0 unless the

actual stream has x.

12

13

 Name refers to the inventors:

 Datar, Gionis, Indyk, and Motwani.

 Store only O(log2N) bits per stream (N = window
size).

 Gives approximate answer, never off by more
than 50%.

 Error factor can be reduced to any fraction > 0, with
more complicated algorithm and proportionally
more stored bits.

14

 Each bit in the stream has a timestamp, starting
0, 1, …

 Record timestamps modulo N (the window
size), so we can represent any relevant
timestamp in O(log2N) bits.

15

 A bucket is a segment of the window; it is
represented by a record consisting of:

1. The timestamp of its end [O(log N) bits].

2. The number of 1’s between its beginning and end.

 Number of 1’s = size of the bucket.

 Constraint on bucket sizes: number of 1’s must
be a power of 2.

 Thus, only O(log log N) bits are required for this
count.

16

 Either one or two buckets with the same
power-of-2 number of 1’s.

 Buckets do not overlap.
 Buckets are sorted by size.

 Older buckets are not smaller than newer buckets.

 Buckets disappear when their end-time is > N
time units in the past.

17

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

18

 When a new bit comes in, drop the last (oldest)
bucket if its end-time is prior to N time units
before the current time.

 If the current bit is 0, no other changes are
needed.

19

 If the current bit is 1:

1. Create a new bucket of size 1, for just this bit.

 End timestamp = current time.

2. If there are now three buckets of size 1, combine
the oldest two into a bucket of size 2.

3. If there are now three buckets of size 2, combine
the oldest two into a bucket of size 4.

4. And so on …

20

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

21

 To estimate the number of 1’s in the most
recent k < N bits:

1. Restrict your attention to only those buckets
whose end time stamp is at most k bits in the past.

2. Sum the sizes of all these buckets but the oldest.

3. Add half the size of the oldest bucket.

 Remember: we don’t know how many 1’s of
the last bucket are still within the window.

22

 Suppose the oldest bucket within range has
size 2i.

 Then by assuming 2i -1 of its 1’s are still within
the window, we make an error of at most 2i -1.

 Since there is at least one bucket of each of
the sizes less than 2i, and at least 1 from the
oldest bucket, the true sum is no less than 2i.

 Thus, error at most 50%.

